blagin_anton (blagin_anton) wrote,
blagin_anton
blagin_anton

Category:

Перед тем, как создать излучение, электрон вытягивается в длину и становится тоньше...

Иногда учёным выпадает счастье не открыть какое-то новое явление, а объяснить всем природу хорошо известного явления. В редчайших случаях такое объяснение общеизвестного может привести к созданию новой науки. Именно так случилось с объяснением светимости сильно нагретого тела, сделанным в 1900 году немецким учёным Максом Планком. И теперь имя Планка навсегда связано с новым разделом физики — "квантовой механикой". 











"В середине 1890-х годов Планк занялся проблемой теплового излучения и в конце 1900 года достиг решающего успеха: получил правильную формулу для распределения энергии в спектре излучения абсолютно чёрного тела а также дал её теоретическое обоснование, введя знаменитый «квант действия» h. Квантовая гипотеза немецкого учёного, глубокий смысл которой вскрылся лишь много позже, ознаменовала рождение квантовой физики. В последующие годы Планк приложил много усилий, пытаясь согласовать свои результаты с классической физикой; он крайне настороженно относился к дальнейшим шагам, уводящим в сторону от старых представлений, например, к теории "световых квантов" Эйнштейна. Однако все его усилия оказались напрасными..." Источник.


В этом месте своего повествования я должен сказать, что до Макса Планка, в 1879-1884 годах, австрийско-словенским физиком и математиком Й.Стефаном и австрийским физиком-теоретиком Л.Больцманом уже была установлена зависимость энергетической светимости абсолютно чёрного тела от температуры тела:










Энергетическая светимость R абсолютно чёрного тела прямо пропорциональна четвёртой степени его термодинамической температуры T


Это означает, что при увеличении термодинамической температуры T в 2 раза энергетическая светимость R возрастает в 16 раз.


А в 1893 году немецкий учёный Вильгельм Вин установил зависимость между температурой абсолютно чёрного тела и длиной волны, на которой поток энергии излучения абсолютно чёрного тела достигает своего максимума. Суть этой зависимости отражает этот график:










На основании установленной В.Вином зависимости был выведен "закон смещения", позже названный по фамилии учёного — "законом смещения Вина":










Где b — постоянная Вина:










"Закон смещения Вина" отражает тот факт, что с ростом температуры абсолютно чёрного тела длина волны, на которой поток излучения энергии абсолютно чёрного тела достигает своего максимума, плавно смещается из инфракрасной области спектра излучения в видимую красную область, а при дальнейшем росте температуры она смещается в зону фиолетового цвета.


Каждый из нас не раз наблюдал это смещение, когда плавно регулировал от нуля до максимума яркость лампы накаливания через светорегулятор, именуемый в быту "диммером" на английский манер. 










Сначала нить лампы накаливания еле-еле светится красно-оранжевым светом, потом, по мере увеличения напряжения и тока, протекающего по вольфрамовой нити, её яркость возрастает с одновременным изменением цвета светимости, он становится жёлтым. Потом, когда мы вновь увеличиваем напряжение и ток, текущий через нить лампы, и по мере появления в спектре излучения зелёного и голубого, затем синего и фиолетового свечения, лампа накаливания начинает светить белым светом или почти белым светом.


Вспомните сейчас про радугу а также о том, что белый свет — это сложный свет, это сумма излучений красного, оранжевого, жёлтого, зелёного, голубого, синего и фиолетового цветов. 










Но вот вопрос: в какой пропорции смешаны эти семь цветов? Какая мощность светового излучения приходится на каждый из них?


Максу Планку и предстояло решить эту задачу, выполняя заказ науки и промышленности, изготавливающей лампы накаливания. Идя эмпирическим путём, он смог вывести математическую формулу спектральной плотности мощности излучения (спектральной плотности энергетической светимости) абсолютно чёрного тела, но самое главное — 14 декабря 1900 года Планк выдвинул гипотезу, суть которой заключалась в том, что при тепловом излучении энергия испускается и поглощается телами не непрерывно, а отдельными очень мелкими порциями, "квантами"


Иными словами, энергия Е любой системы при излучении или поглощении электромагнитного излучения частоты ν может измениться только на величину, кратную энергии "кванта".  


То, как нагретое тело испускает или поглощает тепловую или световую энергию — отдельными квантами, мелкими энергетическими "порциями", можно сравнить с картинкой, составленной из отдельных очень мелких, но не равных нулю "пикселей" разного цвета. 










Изображение, составленное из мелких частиц одинакового размера, раскрашенных разным цветом.


Макс Планк вычислил наименьший "пиксель", образующий излучение абсолютно чёрного тела — так называемый "квант действия", исходя из экспериментальных данных и обнаруженной зависимости: энергия, излучаемая нагретым телом увеличивается пропорционально росту частоты излучения или пропорционально укорочению длины волны излучения (что суть одно и то же). 


В этом случае оказалось достаточным разделить полученную экспериментальным путём величину энергии излучения Е на частоту этого излучения v и получить результат — 6,55 • 10−минус 34 Дж•сек. Это значение (отношение Е/ν) оказалось константой (неизменяемой величиной) для всего спектра излучений нагретого абсолютно чёрного тела. Впоследствии её назвали "постоянной Планка". В математических формулах она обозначается как h. Полученный Планком в конце 19 века результат h всего на 1,2% отличается от уточнённого в ХХ веке значения. Вот современные (уточнённые) данные "постоянной Планка" в разных системах единиц измерений:










Следует сказать, что созданная другими учёными с подачи Макса Планка "квантовая механика", куда "постоянная Планка" вошла основной константой квантовой теории, до сих пор не дала ясного ответа на вопрос: "какова же физическая сущность постоянной Планка?" И уж тем более, "квантовая механика" до сих пор не дала ответа на вопрос: "каков механизм образования фотона, наименьшей частицы света, движущимся электроном?"


Среди учёных до сих пор идут жаркие споры по этому поводу, а значит, природа этой константы, весьма точно вычисленной Максом Планком эмпирическим путём, до сих пор остаётся загадкой! 


Приведу лишь одно мнение:


“Постоянная Планка h как физический факт означает существование наименьшего, не уменьшаемого и не стягиваемого к нулю конечного количества действия в природе. Как ненулевой коммутатор для любой пары динамической и кинематической величин, образующих своим произведением размерность действия, постоянная Планка порождает свойство некоммутативности для этих величин, которое в свою очередь является первичным и неустранимым источником неизбежно вероятностного описания физической реальности в любых пространствах динамики и кинематики. Отсюда – универсальность и всеобщность квантовой физики.” (Цехмистро Л. Н. "ФУНДАМЕНТАЛЬНАЯ КОНСТАНТА ФИЗИКИ – ПОСТОЯННАЯ ПЛАНКА").


Если до сих пор новая наука не даёт ответа на целый ряд фундаментальных вопросов, это значит, что и сегодня можно выдвигать гипотезы, позволяющие прояснить суть названных загадок природы. 


Перед тем, как высказать свою гипотезу, объясняющую физическую сущность "постоянной Планка", я предлагаю сейчас сделать краткий экскурс в историю физики. 


В 1801 году английский учёный широкого профиля Томас Юнг блестяще доказал, что свет — это волны. Занимаясь акустикой (наукой, изучающей звуки), Юнг обратил внимание на усиление и ослабление звука при сложении звуковых волн и, обратившись к принципу суперпозиции, открыл явление интерференции волн. Сначала он открыл интерференцию звуковых волн, потом — интерференцию световых волн! Юнг доказал на уровне наглядной очевидности, что две волны звука одинаковой длины равно как и две волны света одинаковой длины, при взаимном наложении друг на друга, могут усиливаться или ослабляться и даже при определённых условиях взаимоуничтожаться! А это является бесспорным доказательством того, что свет — волны. Причём волны, во многом схожие с волнами звука!










Картина интерференции когерентных световых волн.


Томас Юнг первым в мире произвёл измерение длин световых волн, сделав это для каждого цвета в отдельности. Для красного света Юнг получил значение 1/36 000 дюйма (0,7 μ), для крайнего фиолетового — 1/60 000 (0,42 μ). Это были первые в истории физики измерения длин световых волн, произведённые с приемлемой точностью.


А ещё раньше, в 1808 году, французский физик Этьен Луи Малюс объяснил явление поляризации света, открытое в 17 веке датским учёным Эразмом Бартолином (в 1669 году) и нидерладским учёным Христианом Гюйгенсом (в 1678 году). Опираясь на корпускулярную теорию света Исаака Ньютона, английского физика, математика, механика и астронома, одного из создателей классической физики, Малюс предположил, что "корпускулы" в солнечном свете (предшественники современных "квантов"!) ориентированы беспорядочно, но после отражения от какой-либо поверхности или прохождения сквозь анизотропный кристалл они приобретают определённую ориентацию в пространстве. Такой «упорядоченный» свет он назвал поляризованным. В 1810 году Малюс открыл закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора: 


«Интенсивность линейно поляризованного света после прохождения анализатора уменьшается пропорционально косинусу Ф, где косинус Ф – угол, образованный плоскостями поляризации света и прибора».


















В том же году Этьен Малюс создал количественную корпускулярную теорию поляризации света, объяснившую все известные к тому времени поляризационные явления: двойное лучепреломление света в кристаллах, закон Малюса, поляризацию света при отражении и преломлении.










Продолжение здесь: https://blagin-anton.livejournal.com/1047483.html


Subscribe

Buy for 50 tokens
Buy promo for minimal price.
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 1 comment